Non-Negative K-SVD as an element of the forecasting electricity demand system
نویسندگان
چکیده
منابع مشابه
Demand Forecasting for Electricity
Introduction Forecasting demand is both a science and an art. Econometric methods of forecasting, in the context of energy demand forecasting, can be described as ‘the science and art of specification, estimation, testing and evaluation of models of economic processes’ that drive the demand for fuels. The need and relevance of forecasting demand for an electric utility has become a much-discuss...
متن کاملForecasting Uncertainty in Electricity Demand
Generalized Additive Models (GAM) are a widely popular class of regression models to forecast electricity demand, due to their high accuracy, flexibility and interpretability. However, the residuals of the fitted GAM are typically heteroscedastic and leptokurtic caused by the nature of energy data. In this paper we propose a novel approach to estimate the time-varying conditional variance of th...
متن کاملK-SVD and its Non-Negative Variant for Dictionary Design
In recent years there is a growing interest in the study of sparse representation for signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described as sparse linear combinations of these atoms. Recent activity in this field concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionar...
متن کاملNonparametric modeling and forecasting electricity demand: an empirical study
This paper uses half-hourly electricity demand data in South Australia as an empirical study of nonparametric modeling and forecasting methods for prediction from half-hour ahead to one year ahead. A notable feature of the univariate time series of electricity demand is the presence of both intraweek and intraday seasonalities. An intraday seasonal cycle is apparent from the similarity of the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: E3S Web of Conferences
سال: 2019
ISSN: 2267-1242
DOI: 10.1051/e3sconf/20198401003